
First, the bad news. Associate Editor Steve Zeller,
who has conducted our APL column since it started,
suffered another hardware failure in his SuperPET

and decided to move on to a new IBM PC AT (he has it, but the bank owns it). We
have been expecting this, for Steve's thoughtful employer provides him an older
IBM PC at work. With many regrets and much praise for his labors in behalf of
all APLers in ISPUG, we wish Steve good luck, and suspect he'll have it— his old
printer, cabled to the PC, went to work at once with no hardware changes, a good
augury indeed. We'll miss a fine writer, a sharp mind and a good friend.

And the good news: Reg Beck, of Williams Lake, B.C., a charter member of ISPUG,
has agreed to step in as the new APL ̂ ss^c'ate Editor. His first column appears
in this issue. Because Reg teaches APL each year to a new crop of students, he
understands the problems the language poses for newcomers— of whom we have a
bunch, particularly in schools. We therefore asked Reg to review the aspects of
APL which often puzzle those new to the language as implemented in SuperPET.

And some bad news: The lead article in issue 14, Volume I, announced that Water
loo Pascal and Structured Basic are available for the C-6 4, which Commodore now
sells to schools in a SuperPET case with a green screen. We speculated that this
might mean the end of SuperPET and 8032 production. It appears we were right;
Commodore has told its dealers that when the limited present supply of Super-
PETs is gone, Commodore will produce no more. The 8096 has been discontinued;
upgrade boards to convert an 8032 either to SuperPET or to an 8096 likewise are
no longer being made. We suspect Commodore may change its mind if the schools
raise a fuss— but only if.

We've expected the news for six months or more, as Commodore moved to support
the educational market with the C-64. We see no signs that FORTRAN, APL, or
COBOL will be available on the C-64. The schools which teach those languages on
SuperPET must, therefore, either buy more SuperPETs now, while they are still
available, switch to computers far more expensive than SuperPET, or forever hold
their peace. If, as we suspect, a number of schools are committed to SuperPET
and to courseware for it, we'd suggest they send the Chairman of the Board of
Commodore a letter from their principal, superintendant of schools, or from the
school board. We frankly doubt the C-64 can hack all languages the schools want
to teach. Waterloo had to shoehorn subsets of most languages into SPET's 96K;
what can be done with the C64's 64K? We suspect Commodore knows this; if so, it
must either keep going with SuperPET or come up with a better answer— or Apple
and IBM (PC Jr.) will gobble up the computer science market.

BLOODY NOVEHEER

We'd guess everybody subscribes to the Gazette in the fall, after they comb out
the beach sand, come down from the mountains, and return to business or school.
Almost a third of you will find your subscriptions expire with this issue. If
your address label is underlined in red, your membership in ISPUG has expired.

If so, check the RENEW block on the last page and send it with your address la
bel or a copy. Remit $15 U.S. in North America or $25 if elsewhere. Please do it
before we scratch your label from the' disk file and must retype all that stuff!

We doubt that Commodore built a drop-dead switch into SuperPET so that the poor
thing will expire when production ceases; all chips used are available from com
mercial parts stores, except for imaged ROMs. Because we have disk images of

SuperPET Gazette, Vol.II, No.1 -1- October/November 1984

Quantity Manual Price
2000 APL 9.00
200 Assembler 10.00

500 mFORTRAN 10.00

780 mPASCAL 10.00

0 mBASIC

those on the ISPUG utility disk, we'd reckon present SuperPETs can be maintained
for some time. Our SuperPET does just about everything we want done; we're going
to keep it until a machine far superior to anything we see on the market becomes
available. We aren't going to settle for rodents, icons, and darling tiny disks
at $4*50 each, nor tolerate the people-hating operating system of the IBM PC and

its clones.

Meanwhile, many schools need language manuals. We recently discovered that many
of them are no longer available from Howard W. Sams, the printer, and so called

Waterloo. Most of the manuals are available from
WATCOM Publications, 415 Phillip St., Waterloo,
Ontario, Canada N2L 3X2. Waterloo said that the
quantities at left were available. We also talk
ed co' Tom Dow, Commodore's SuperPET manager, a
knowledgeable and helpful guy. He's arranged to
make available— directly from Commodore— either
of two different packages: 1) Manuals for all of

the languages, plus update pages for V 1 .1, plus the COBOL manual, plus V 1 .1 disk
software, and 2) a V 1 .1 update package which holds update pages for all manuals,
a COBOL manual, and V1.1 disk software. Because Commodore has a matched number
of manuals and disks, it will not sell manuals or disks individually. You may
order the packages only. If you want single manuals, order from Waterloo. This
leaves only one problem: Waterloo is out of COBOL manuals for SuperPET. Waterloo
did say, however, that the V2.0 COBOL manuals (for the IBM PC) are available and
suffice to learn the language; we're told there are few differences between the
V 1 .1 and V2.0 implementations, except for three pages on system dependencies in
the SuperPET manual (which are covered in the COBOL tutorials on disk anyway).
Order V2.0 COBOL manuals from Waterloo for $15 (U.S. in the U.S., Canadian in
Canada). What do you do for mBASIC manuals? Weep or (horrors) X---x it?

As we go to press, we do not have prices or part numbers on the Commodore pack
ages. If the information arrives in time, we'll add it to the last page of this

issue. Check there.

THE COMPILER BRIGADE PROGRESSES Well, we may yet have a compiler for micro-
BASIC. John Toebes1 six slaves have finished

disassembling all of mBASIC and most banks have been successfully reassembled.
The hard work of commenting the code (ugh!) is well underway. We list the slaves

at left, and suspect all of them are, by
Loch H. Rose, Cambridge, Mass. now, well aware of the basis of the old
Louis Mittelman, Gordonsville, Va. Array rule: "Never volunteer!". After hav-
James M. Sweeny, New Paltz, N.Y. ing disassembled a few bytes of Waterloo
Alain Proulx of L'Ephiphanie, Quebec code ourselves, we suspect all of 'em are

Brad Bjorndahi of Bramalea, Ontario due jump pay (if you find ten consecutive
Russ McMillan of Madison, Wis. lines of code which don't jump or branch

to another piece of far-distant code, you
stop before you ruin a good day). Our thanks to the six for much hard work; once

the comments are finished, our genius John Toebes will then write the compiler.
Uncle Sam snapped him up, however, for a four-year tour in September, and with
superb wisdom sent him to Washington, D.C. (on a 2nd Looie's pay, he will there
starve to death after he pays the rent). With more wisdom, the AF then assigned

^ ™ c n ? ta^V unS / e!la’ trained as a system programmer, to maintaining old programs
tCOBOL, John.). Worse yet, John had to leave new bride Mary Ellen in Raleigh to
inish school. Oh, well; if you don't like your work, love and hunger will take

your mind off that problem.

SuperPET Gazette, Vol.II, No.1 -2- October/November 1984

ONCE OVER LIGHTLY A note from Austin Hook, president of the Computer Shop of
Miscellany Calgary: "Congratulations to the Calgary School Board for

their decision to purchase another 81 SuperPETs to be in
stalled by September 1st. They are also upgrading some of the 8032s which they
own to SuperPETs, bringing the total in the system over the 100 mark. We agree
the SuperPET is still by far the best machine for Computer Science instruction.
No product on the market can touch its price/performance." Yes, indeed. But does
Commodore agree? If schools want SuperPET to stay in production, scream!

ON BEING A TERMINAL AND HOSTCM Longtime member P.J. Rovero, about to depart
for Italy with wife and newborn, reports: "I'm very busy with work on my thesis;
the SuperPET gets a workout, but these days it's mostly just a terminal. I use
NEWTERM going to/from the Control Data and Cyber mainframes at one site and just
the mED with the IBM running HOSTCM. I'm very pleased with version 1.3 of the
mED. No bugs detected in any area, including host communications. [Ed. V1 .3 of
the mED, in optimum hand-writ assembly code by John Toebes and wife Mary Ellen,
is on the ISPUG Utility Disk.]

"A note for other HOSTCM users— our facility recently upgraded its mainframe op
erating system. The system prompt and response characteristics were not changed
($11 and $13, as per p. 60 of Systems Overview manual), but now the first char
acter after response is always a "delete"($7F). Apparently, when the first
character of a system message is "delete", the checksums are not properly trans
lated. The host and SPET then trade negative acknowledgements all day....

"The fix is to specify $7F as the response character when SETUP is invoked. End
of problem. SuperPET users were not the only ones affected by this change. At
the Naval Postgraduate school, HOSTCM is the system-supported micro-host link.
So even CP/M and MS DOS users are using HOSTCM through software developed by
members of the school's Hobby Computer Club." [Ed. Which means, of course, that
the software built into SuperPET for Host communications must be written for the
other computers. If IBM finds out about this, heads will hang in Armonk.]

COST OF BACK COPIES Gee, we got this stern letter from a member, protesting
what he calls "The outrageous price for back issues of the sheet." Let's take
a look at the price of a 30-page issue, which is $3.75. We can't stock back is
sues in quantity unless we buy a warehouse, so we have to print them as they're
ordered. How? By hiring somebody to come in and run off the copies, ten sets at
a time, on a Xerox machine— and the printing runs us 10 cents a page. Cost of
printing a 30-page issue is $3.00 plus the cost of labor to print, collate, and
staple, plus an envelope for multiple copies plus first-class postage (we figu
re the folks want the copies now, not later). Add it up. Getting rich we aren't.

8050 DISKS ON AN 8250 DRIVE We continue to get notes saying "Geez, that 8050
disk you sent me gives an error message on my 8250...." Sure it does. Different
BAM. First time you try to get a directory or load a file, you get an ERROR 66,
ILLEGAL TRACK OR SECTOR message. Ignore it and try again. Lo, no more problems.
Best COPY the 8050 to a formatted 8250 disk. BACKUP won't work.

RENAMES ON DISK/1 It's easy to overlook the fine print in Systems Overview,
and to try to rename a file on disk/1 with "rename disk/1.oldnarae to disk/1.new-
name", only to find (sob!) that "disk/1" is now part of the new filename. Don't.
Use "rename disk/1.oldname to newname," or else thee must cudgel "disk/1" out of

SuperPET Gazette, Vol.II, No.1 -3- October/November 1984

the new filename with a monster like "rename disk/1.disk/1.newname to..." Okay,

Fred Foldvary, the unwary are now warned of the trap you fell into.

HALGOL!!!! Out in Orange County, California (where anybody with a Democrat
for a great-grandaddy is considered a rascal and a radical) we found new member
Hal Hardenbergh, who builds special computer boards, most equipped with a Motor
ola MC 68000. Hal does business under the name of Digital Acoustics; he's a
speed merchant; among other endeavors he's writing a BASIC-like new language
called HALGOL. We'd say it's about half-done. Associate Editor Terry Peterson
has a version hooked up to a 68000 board attached to his SuperPET. HALGOL, com
piled as each line is written, is designed for superfast and accurate math, even
with transcendentals (infinitely repeating numbers, such as pi). The little pro

gram at left must calculate a bunch of
for i=1 to n floating-point values for tan(i) which,

b=tan(atn(exp(log(sqr(i*i)))))/i—1 if done with absolute accuracy, would
z=z+b*b show no error when Root Mean Square err-

next n or is determined. Absolute accuracy is,
z=sqr(z/n) of course, impossible— especially when
print "R.M.S. error=";z computed in binary. The RMS error is a

measure of how accurate the transcenden
tal routines are in any computer. How good is HALGOL? Well, the program at left,
iterated 2500 times, runs in 18 seconds with an RMS error of 4*1006 E-12. On our
SuperPET, in mBASIC, it runs in 780 seconds for an RMS error of 6.1153 E-7. Note
that the difference in RMS error is roughly five orders of magnitude, and that
the program executes 43 times as fast in HALGOL as in mBASIC. Some language, and
some microprocessor! Number crunchers and speed freaks, watch HALGOL.

Hal bought his SuperPET so he could wire in a black box and power supply to run
HALGOL off the 6502 side and hitch up the 68000 processor, which runs at 12.5
MHz. Yes, he plans to offer the black box to those who want it, together with

HALGOL, when done. More later, when we have prices and performance in hand. In
the meantime, if you care to sample demon Hal's wit and wisdom and follow the
progress of HALGOL, send $15 for a year's subscription to his newsletter, DTACK
GROUNDED, which arrives about once a month. But don't write Hal any letters. He
won't answer 'em, being far too busy making a living. The newsletter is witty,
full of gossip and incisive insights on the computer industry. Send the loot to
DTACK GROUNDED, 1415 E. McFadden, Suite F, Santa Ana CA 92705.

STAPLE BONUS Our new print shop drove enough staples into the last issue to
hold back the Mississippi at full flood. We know who did it; when he goes for
his last swim in 1984, we're gonna staple his shorts to the bath-house door with
a full clip. Those who opened the last issue with pliers will be avenged.

WE LOSE FAITH FROM TIME TO TIME That the voters in a democracy are informed,
that is. Though we announced last issue that Paul Skipski, former Secretary, had
resigned, we still get letters addressed "Dear Paul." Oh, well; just last week a
letter arrived at the White House to "Dear President Garfield." Let us give who
ever wrote it credit for knowing that General Grant is out of office.

SAVE TO TERMINAL Since SuperPET handles the keyboard and terminal as files,

you can accomplish some strange feats. Loch Rose writes that you can "list" a
whole program to screen, with no pauses, with a "save terminal" in mBASIC; any
body want to guess what happens if you "put terminal" in other languages?

SuperPET Gazette, Vol.II, No.1 -4- October/November 1984

OOPS and AHEM DEPT. Any Okidata owners who tried to run the function dump we

[11] LOOP• SCR+-IQ printed last issue (I, 274) found it won't work until
line 11 reads as shown at left. Vie goofed when we enter

ed it by hand from hard copy and couldn't test because we don't have an Oki.

WEST GERMAN INFO BOX A. Pietrzok of Frankfurt writes that he's searching for
other SuperPET users in Europe and America and says he leads a SuperPET "Infor
mation Box", tel. 06181 / 48884* If interested, call or write to Friederichstr.
5, 6000 Frankfurt/Main, West Germany. He now knows about ISPUG.

8032 IS NOT NECESSARILY AN 8032 Letters keep coming in saying "I have this
telecom program which works fine on an 8032, but it won't work on SuperPET in
8032 mode..." Well, the 8032 in SuperPET is equipped with a 6551 ACIA, and plain
8032s aren't. That's why the Commodore public domain bulletin-board software had
to be modified for SuperPET— and why programs for the serial port on plain 8032s
won't work properly when used on the 8032 side of SuperPET. What to do? Send $20
for "The SuperPET Serial Pert," to WATC0M Products, 4^5 Phillip Street, Waterloo
Ontario, Canada N2L 3X2. Learn how to handle the ACIA, which controls the port.
Or use the programs on the ISPUG master telecom disk, which cope with the ACIA.

PRINTER FILES FOR THE mED In Vol. I, issue 13, p. 220, we explained, but not
clearly, how to send disk command files to printer from the microEDITOR. We've
had a lot of questions since, so we restate the fundamentals. If you want to be
able to send your printer a command to change its format (margin, character set,
etc.), write the command sequence in program in your favorite language, and file
it to disk. Then copy the disk file to printer from mED. Suppose, for example,
you want to set your printer for boldface, and that the command sequence is ES

CAPE 12. In language, use a program like that at
open #12, "bolface", output left, which writes the proper ESCAPE sequence to
print #12, chr$(27)+"12"; disk. When you want boldface, "copy boldface to
close #12 ieee4" in the mED from disk. Be utterly certain

that any CR is suppressed with a semicolon, as at
the left, unless a CR is demanded by the ESCAPE sequence. Those with Commodore
printers often must use secondary addresses to change printer parms. You can't
OPEN and CLOSE secondaries from disk files in the mED. But— you can send the
commands to secondary addresses directly. Suppose your printer manual directs
that you open secondary channel 13 and then to print to it, as at left. The pro

gram sends to secondary address 13 only one
open #12, "printer4-13", output CR. You can do this easily from mED. Open up
print #12 a blank line in mED, leave the screen cursor

on it, and at command cursor say: ". p print-
er4-13". The says "transmit only the line the screen cursor is on", and the
rest of the command prints a null line— plus a CR! The CR is sent to the proper
secondary address at printer. If the printer command requires any character you
can send from mED (any ASCII code above 32), you can send that, too— by putting
it on the single line you "put" to printer. Remember that a CR is always sent by
mED at end-of-line by any "put". Last, you have the option to "copy" any disk
file with the right printer commands in it to "printer4-x" (where "x" is the
proper secondary address). Try that, Arnold. Your printer should swoon.

ADA 1450 INTERFACE We printed this tip on switch settings on the ADA 1450
IEEE-Serial Interface long ago, when the world was young. Disregard the recom
mended switch settings Commodore publishes and which the maker recommends. They
will not work from SuperPET to any serial printer addressed as "ieee4". The on

SuperPET Gazette, Vol.II, No.1 -5- October/November 1984

ly switch settings which will work universally, in WordPro, PaperClip, 6502 and
6809 are: switch 1 ON, switches 2 through 4 OFF. All BASIC 4.0 listings are sent
in caps; everything else prints as "what you see is what you get."

HOW TO DRIVE MONITORS FROM SUPERPET Don Moraberg of Green Brook, N.J. writes
that he'd love to be able to drive a bunch of student monitors (not other Super
PETs, but plain monitor screens)— or a wide-screen projection TV from SuperPET.
He says he's seen it done from Apples and Ataris. If you'd like this capability,
write the Editor. If enough people are interested, we'll look into it.

AN INDEX TO THE ISSUE We hope to start indexing each issue of Volume II, of
which this is issue 1. Look on the very last page (the outside cover). If we
succeed, you'll see it there; if not, we'll regroup and try next issue. It's a
bit hard to index an issue by page number when printed it isn't yet, but we must
try— even ye ed can't find things any more yet.

THE NAME OF PAPERCLIP Bob Davis writes that his dealer kept sending him the
wrong version of PaperClip, and that there are three: PaperClip 64 (for C64),
PaperClip (for the 8032), and PaperClip Expanded (for SuperPET and 8096). When
Bob finally got the nomenclature straightened out, he got the right 'Clip. If
you order, be warned. The mad people who prepare parts catalogs and name parts
live in their own world: we once tried to order a plain 8-inch crescent wrench,
and after a month found it named "Tool: wrench, adjustable, offset head, worm
driven." Care to guess the proper nomenclature for a roll of toilet paper?

UD11 TOWER IN BACKWARD Those with old three-board SPET's may have had some
one install the two extra switches which control sockets UD11 and UD12. When
Bob Davis installed his 'Clip ROM in UD11, SPET died. Turns out that the tower
or socket for UD11, installed with the switch, was in backward. When Bob rever
sed the ROM, all was okay. Watch it. (On two-board SPETs, install the 'Clip ROM
in U4 6 , upper board.)

A BUG IN NEGATIVE INTEGERS Two ISPUG members, Paul Schain and Peter Frisk,
by Associate Editor recently pointed out another bug in mFORTRAN's

Stan Brockman formatted input. It seems that negative integers
cannot be read back from a file with the field

specification used to write the file in the first place! The little program at
left writes a record containing five one-digit negative numbers to a scratch

file, using 15 format. The record looks like this,
integer k(5) with * showing a blank character in the file:
open(l1, file="scratch")

write(11,1) (-i,i=1,5) ~~-'T"-2~~~-3'‘~ - 4 ~ ~ - 5
1 format(5i5)

rewind(l) , The problem is that mFOR formatted input expects
read(l1,l) (k(i),i=1,5) the sign, if present, to the in the first position
print,k in the field being read (— ***1, etc.); if it's not
close(ll) there, a conversion error occurs— which is exactly
end what happens when the record we just made is read

with an 15 format. You can, however, read the file
with a "3X,I5“ format. Well, of course you don't know how many digits exist in
any integer you read, let alone whether a value is signed or not! The language
should let you write formatted input instructions which are flexible enough to
specify the maximum field width to be read without concern for where the sign
is. After all, you can specify formatted input with REAL data (using the "F" and

SuperPET Gazette, Vol.II, No.1 October/November 1984

"E" descriptors) and not be fussy about the position of the sign; the data are
read correctly.

You can sidestep the bug in three different ways: 1) Read the data with an "A"
descriptor of the required field width; then convert it to integer with the in
trinsic function "cnvc2i". For the example above, you read with an "A5" format;
2) Read the data into a real variable with the "F" or "E" descriptor, specifying
zero decimal places; then convert it by setting it equal to an integer variable
(i.e., read with "F5.0" format); or, 3) Use list-directed (LD) reads. Of course,
you must change output to disk to include comma delimiters between data values;
if you do this, an LD read will properly and swiftly read all values, including
negative integers.

Alternative 3 appears to me to be the most reasonable solution if you can save
current data to be read later. The other two will save your bacon if you want to
read data you saved last month or last year. (Newcomers to SuperPET or raFORTRAN
will find an explanation of the terms used above in the Gazette, Vol.I, p. 256.)

A PASCAL COMPILER FOR SUPERPET [A few months back, we published a note about
by Associate Editor the ability of the ZOOM compiler on the C-64

Robert Davis to handle the Pascal ASCII files generated by
SuperPET. Since then, Bob Davis has been try

ing a variant of ZOOM (KMMM Pascal), which runs on the 6502 side of SPET. Ed.]

KMMM Pascal, Level [Version] IV.6E, consists of an editor, a compiler, and a
translator, plus some demonstration programs— all on a disk which may be copied.
A security key (dongle) must be attached to the No. 1 cassette port to use the
compiler— a two-pass program which creates in memory a P-code file from either
an ASCII or a PET ASCII source file. The translator creates a machine-language
program from the P-code. The machine-language program consists of a run-time
package of 6K of support routines plus the machine code created from the source
file. You do not have to use the dongle when you run the machine code. The run
time package is copyrighted, but you can make unlimited copies if the copyright
display isn't removed and if KMMM Pascal is given credit in any documentation.
ZOOM Pascal is essentially level III of KMMM Pascal, but ZOOM is available only
on the C-6 4 .
Relative to standard Pascal, you face some restrictions and changes: ARRAY is
limited to two dimensions; INDICES are limited to integer sub-range. Enumerated
types (e.g., days of the week) as an index are a major strength of Pascal; the
index limitation is a potentially serious flaw. An ARRAY of ARRAYS is likewise
not allowed; file names are STRINGS instead of PACKED ARRAYS of CHARS. You can
address IEEE devices; GOTO is not implemented. One school says never use GOTO;
another says there1re very legitimate uses for GOTO at times (Peter Grogono).
I have some fairly powerful programs which use GOTO legitimately; it would be
awkward to rewrite them. PACKED is treated as a comment.

Standard Pascal handles strings as PACKED ARRAYS of CHARS; KMMM employs string
functions instead. You find significant differences in programming approach; ex
isting programs must be revised. SET is not implemented— for some, a serious
flaw, for the concept is unique to Pascal, at least relative to BASIC and FOR
TRAN, and often is useful. TYPE - FILE is not allowed. VAR - FILE is limited to
TEXT or to component type CHAR or RECORD. WITH is not implemented— which means a
bunch more typing and a cluttered program when you deal with RECORDS, but it's
not a true limitation. All of the UCSD STRING handling functions and procedures

SuperPET Gazette, Vol.II, No.1 -7- October/November 1984

are available except INSERT. DISPOSE is not implemented, which might be a prob
lem with lengthy linked lists (I'm a bit out of depth here). Neither PACK nor
UNPACK are implemented; since both are missing from the Waterloo version, this
should not be a problem. PAGE isn't implemented; though I'll miss it, it's easy
to program around its absence.

You find other limitations: The maximum size of a procedure or function paramet
er is 80 bytes. A maximum of 132 bytes or so would be nice; then you can send a
full line to a dot-matrix printer in compressed mode or print full width on 14-
inch paper. A structured type procedure or function parameter, e.g., an ARRAY,
must be declared as a variable parameter. This isn't considered good practice,
for you risk side effects; you must carefully check any existing, well-written
program to live with this limitation. The fields of a RECORD type may not exceed
a total of 255 bytes; this could be a problem, but such a limit isn't unusual on
many data base systems. The fields of a RECORD type may not be structured. This
could be a problem.

After I renamed them in caps so the file names could be read in 6502, I compiled
and ran the Waterloo tutorial examples without modification. Results: PEX1-18
and PEX23 ran with no errors. In PEX19, the VAR matrix had to be changed to a
two-dimensional array of integers; the program then ran without a problem. PEX20
needed such extensive revision I didn't bother. PEX21 and 22 must be rewritten
in terms of STRINGS instead of PACKED ARRAYS. Now, of course, we come to the
good part— speed of execution. First, I tried some loops (time is in seconds):

Loop Form: Variables: KMMM Waterloo

for i := 1 to 1000 do integer 0.73 21.3
v := v + 1; real 1.90 28.6

repeat v := v + 1 integer 0.36 35-4
until v = 1000; real 1.90 48.4

while v < 1000 do integer 0.48 35.0
v := v + 1; real 2.15 48.0

The Sieve of Eratosthenes for the primes to 1000 requires 5.6 seconds in KMMM
Pascal, 27.8 seconds in Commodore BASIC, and just over four minutes in Water
loo's interpreter. On the other hand, a program which solves for three simultan
eous equations by Cramer's rule takes 33-4 seconds in KMMM Pascal and only 44*6
seconds in the Waterloo interpreter in SuperPET. The same equations, by Gauss
ian reduction, take 33*0 and 42.5 seconds. The bulk of the time in all cases is
for entry of the required twelve real numbers.

We also face some known problems: READ(LN) and WRITE(LN) when used with files
are limited to TEXT or FILE OF CHAR. GET and PUT are limited to FILE OF RECORD.
TRUNC and ROUND return a value off by one for negative arguments. I presume that
the author of KMMM is at work on this. When I tried a somewhat longer and more
complex program to solve simultaneous equations by Gauss-Jordan eliminations, I
received a spurious and fatal error message from KMMM. It seems it can't pass a
Boolean variale as a procedure parameter (I ran the same program in Waterloo's
interpreter without problems). I also discovered that error checking isn't com
plete; e.g., you get no error message when a number is outside of its declared
subrange. And, though it's a minor point, there are no default field width for
mats for output of various types, as with Waterloo. Comments must be enclosed in

SuperPET Gazette, Vol.II, No.1 October/November 1984

(* and *); underlines must be eliminated (they're interpreted as back-arrows, or
carriage returns). The photocopied, note-book style manual is rather brief, with
few examples. Extensive familiarity with UCSD Pascal is assumed.

KMMM Pascal definitely has advantage over Waterloo microPASCAL for string hand
ling. It crunches numbers rapidly and should sort arrays quickly. For those who
have a true need or a very great desire for a compiler for their Waterloo Pascal
programs, KMMM Pascal will work. In view of the many limitations and restric
tions, however, it's difficult to recommend KMMM Pascal for compiling Waterloo
programs— except that it's the only game in town (pending what may come of the
OS-9 operating system).

KMMM Pascal is produced by Wilserv Industries, Box 456, Bellmawr, N.J. 08031,

(609) 227-9696, and sells for a suggested $99. Wilserv appears to be a one-man
operation— namely, Willi Kusche. I bought my copy from A.B. Computers, 252 Beth
lehem Pike, Colmar, PA 18915 (215)822-7727, at just $100, including shipping and
handling. Wilserv does not have an 8050 disk drive and must go elsewhere to copy
8050 disks. If that is your format, be prepared for delays. When I sent some
source code to Willi (by cassette tape!), he provided very prompt help in deter
mining the cause of the bug in the Gauss-Jordan program. If you subscribe to the
"User Library" for $5-50, you are entitled to the latest verion of KMMM Pasal if
that was not the one you received. I recently received notice that Level IV.7B
will shortly be available; as announced, "this version allows an array to be de
clared as part of a record," and "there are numerous other minor improvements."

MAPPING EUROPE ON FOOT After we threw away countless hours learning 6809 as-
or sembly language and ran test after test to define how

Reinventing Radio SuperPET works, we learned (sob!) about an easy way.
In short, we mapped Europe on foot and then invented

radio, only to find both had already been done. We checked the references pub
lished last issue (I, 285) and found we didn't have The Commodore SuperPET Com
puter Machine and Assembly Language for the Motorola 6809, by D. D. Cowan; it
is available from WATC0M Publications, 415 Phillip St., Waterloo, Ontario, Cana
da N2L 3X2, for $10 (U.S. in U.S., Can. in Canada) plus postage and handling.

All the things you wanted to know about 6809 assembly language and how it's used
on SuperPET (well, almost) you'll find in the spiral-bound book, 8.5x11 inches,
well-reproduced, full of examples and exercises, and written pretty clearly. If
you are learning or want to learn 6809 assembly language on SuperPET, get it. It
seems entirely suitable for schools; it starts with fundamentals and builds from
the simple to the complex, chapter by chapter— of which there are 20.

The book does have some flaws, but not many. We wish the chapter on macros were
a little clearer, that on interrupts longer and more specific, and that on in
terfacing to the parallel user port a bit easier to follow. But, on the whole,
it's well worth the price; we strongly recommend it, especially to those of you
who'd like to learn assembly language. With this guide, it's almost painless.

MUMPS ON THE SUPERPET If you are tired of having to remember all the little
by Dan Jeffers differences between the different dialects of BASIC

Quality Data Services (or COBOL or FORTRAN or PASCAL or any other language),
2847 Waialae Avenue or if you find you are constantly getting bogged down

Honolulu, Hawaii 96826 with the details of file 1/0 and managing large, in

dexed databases, then I would strongly recommend that
you take some time to check out the MUMPS programming language.

SuperPET Gazette, Vol.II, No.1 -9- October/November 1984

MUMPS is an acronym for (M)assachussets General Hospital (M)ulti-(P)rogramming
(S)ystem, where it was first developed in 1966 to simplify the interfacing of a
wide variety of hospital instruments. From Mass Gen, it quickly found its way
out into the business community, where today the more well-known applications
include COSTAR (a medical records-keeping system) and the Veterans Administra
tion* s File Manager package (a generalized relational database system). Although
it was originally associated with the DEC PDP product line, it has since been
implemented on a wide variety of systems, including Apple (II and Macintosh),
Burroughs, Data General, Harris, Heathkit, IBM PC (and compatibles), Prime, Tan
dem, and many others. MUMPS has been used to develop large-scale systems for a
variety of industries, including banking, insurance, and medical. There are a
number of highly customized applications for auto junkyard inventory control,
television network management, etc., and several artificial intelligence (Al)
applications. A very active MUMPS Users Group (MUG) has an extensive following
in Europe and Japan as well as in the U.S.; it sponsors an annual conference and
periodic regional training seminars, publishes a quarterly digest, and acts as a
clearinghouse for an abundance of MUMPS reference material and public domain ap
plication systems. An associated MUMPS Development Committee (MDC) provides on
going review of the language standard, submits proposals for updating the stan
dard to ANSI (the American National Standards Institute), and evaluates how well
vendor implementations of MUMPS conform to the standard.

MUMPS, in its traditional form, is an interpreted, interactive language with a

number of features that help the programmer to be productive. Once MUMPS is mas
tered, a programmer is able to concentrate on solving applications problems, not
on dealing with the peculiarities of a language or file system. More important
ly, however, MUMPS programs written in one vendor's MUMPS easily port to and run
on another vendor's MUMPS, often with absolutely no translation or revision of
any kind. While the Standard allows implementation-specific capabilities, it de
fines precisely how such capabilities should be implemented.

The feature that most sets MUMPS apart from other languages is its method of
storing information on a disk. Rather than forcing the programmer to deal with
conventional files, MUMPS employs hierarchical disk-based data structures called
"globals", which are accessed exactly the same way as local memory arrays. (They
are called "globals" because on multi-user systems, these data structures are
available to many simultaneous users.) Globals are referenced by prefixing an
up-arrow character (*) before the Global name, which optionally may be followed

by one or more subscripts, either string
SET ~ACCNTS(1234,"NAME")="JOHN SMITH" or numeric. The command at left, for ex

ample, causes "JOHN SMITH" to be written
to disk (it is usually stored in a memory disk buffer and physically written to
disk at a later time). This structure might be appropriate for an accounting sy
stem where account # 1234 is owned by someone named JOHN SMITH. This data can be
read later into the local variable NAME with the syntax at left.

SET NAME=~ACCNTS(1234»,,NAME") The programmer is relieved of any responsibility
for knowing or understanding how MUMPS actually

stores this data on the disk, as this is completely handled by MUMPS. There are
no opens, closes, file numbers, index files, or other anomalies to deal with.
All globals are open all the time; there is no practical limit to the number of
globals or subscripting levels which may be used. All disk space is dynamically
allocated and deallocated as required. Any global may grow to fill all available
disk space. When the data is no longer needed, it may be deleted from the disk

SuperPET Gazette, Vol.II, No.1 -10- October/Wovernber 1984

with either of the commands at left. The second ex-
KILL ~ACCNTS(1234,"NAME") example will delete not only the "NAME" subscript

or but any other subscripts which may have been stored
KILL ~ACCNTS(1234) at the same subscript level as "NAME" under a first

subscript of "1234"*

One of the functions available in MUMPS allows a program to sequentially access
all defined subscripts in any subscript level. This function, known as $NEXT, is
used as follows: If our "ACCNTS global is defined as at left, then the program

below causes the numbers 1038 and 1234
SET ~ACCNTS(1038,"NAME")="JACK WILSON" to be printed on separate lines (the !
SET ~ACCNTS(1234»"NAME")="JOHN SMITH" at the end of the WRITE command ouputs

' a carriage return plus a linefeed).
SET ACCTNUM=0

LOOP SET ACCTNUM=$NEXT(XACCNTS(ACCTNUM)) IF ACCTNUMCO QUIT
WRITE ACCTNUM,!
GOTO LOOP

Besides globals, many other features of MUMPS make it easy to deal with:

1. All arrays, whether global or local, are totally dynamic and sparse. To
tally dynamic means that you need no data definition or declaration statements;
totally sparse means that you can define subscript 100 of an array without allo
cating storage for 99 other elements. In fact, you can define subscripts 100,
399, and 721 and only use up disk or memory space for three data elements. MUMPS
will, in addition, keep the array sorted so that you can access the elements se
quentially in sorted order (using the $NEXT function as described above).

2. There are only two data types: string and numeric. All data are stored
as strings, and are converted internally to numeric as needed, using a straight
forward rule. To demonstrate this rule: the string "2.45ABC" converts to 2.45,
whereas the string "XYZ3" converts to 0 (zero). In effect, MUMPS simply strips
trailing non-numerics from any pure number which leads a string. If there is no
pure number leading the string, MUMPS converts the string to zero.

3. MUMPS includes an extremely comprehensive set of functions and operators
to manipulate strings. They are too numerous for this article; included are all
the common capabilities, such as concatenation, string comparisons, extremely
sophisticated pattern-matching, sub-string and sub-piece functions, sub-string
"finding" (sometimes call the ’index' function in other languages), and many
others.

This truly unique language is available on the SuperPET through Eclectic Systems
Corp., 16260 Midway Rd., Addison, Texas 75001, with a list price of $300. This
version, known as CCSM (for Comp-Consultants Standard MUMPS, for the software
house which developed it), is a full blown standard MUMPS, which I used heavily
in 1982 for developing several small application systems. Although this SuperPET
version is quite adequate for learning and developing MUMPS systems, I would not
recommend it for a production system, as its reliance on Commodore's DOS severe
ly limits the amount of available disk space (globals are contained in a single
DOS relative file, which is limited by the DOS to a little over 167K on any one
diskette). It is extremely slow on getting global data onto and off of the disk,
compared to most other good micro-based MUMPS systems.

SuperPET Gazette, Vol.II, No.1 -11- October/November 1984

The CCSM version is quite adequate for development or learning the language. It
contains its own built-in screen editor, tailored for working on MUMPs programs
and for developing programs to be run on other MUMPS systems. If you’d like to
learn more about MUMPS, I suggest that you contact the MUMPS Users Group (MUG),
4321 Hartwick Road, #510, College Park, MD 20740, (301)779-6555 for more infor
mation. Ask for their order form for MUMPS publications.

* * *

We sent a draft of the review above to Jerry W. Carroll of 21735 Ybarra Road,
Woodland Hills, CA 91364» who recently bought MUMPS. He comments: "Since Dan was
using MUMPS in 1982, he may not have the new revision. The price is now $399 but

includes the MUMPS development com-
1. String subscripts and $0RDER function. mittee Type A extensions included in
2. Range checking on pattern match. the 1983 language revisions. (Some
3. A number of function enhancements. of them are shown at left.) Both the
4. Read length control. string subscripts and $0RDER func

tion are great; $0RDER operates in
the same manner with strings that the $NEXT function does with numerical sub
scripts. A really nice extension to the language.

"The 8050 disk drive is some help with relative files in that two 720-block glo
bal files may be set up on disk. As far as I have been able to determine, only
one global file may be opened at a time, however. This slows down access to data
which occupies more than one global file, since you have to close one before you
access another. An 8250 or 9060 drive might eliminate that problem; I am not
sure that the CCSM version of MUMPS supports these drives....the CCSM manuals do
leave a lot to be desired."

MORE ON REFERENCE BOOKS Don Momberg of Greek Brook, N.J., writes that he's
read the PASCAL references in our last issue, but

that the only book which makes sense to him is PASCAL. An Introduction to Pas
cal and Structured Design, by Nell Dale and David Orshalick, D.C. Heath Tl983).
He says it contains standard PASCAL; that you change nothing for SuperPET; that
it's highly regarded by high school computer science teachers he knows; and that
the New Jersey Institute of Technology now uses it for its undergraduates. Don
adds that it's easy to read and follow the book.

Bob Davis, Associate Editor, PASCAL, reports that he's read Problem Solving and
Structured Programming in BASIC, by Elliot B. Koffman and Frank L. Friedman,
Addison-Wesley (1979). He adds that it is one of a series, of the same format as
other books by the authors, and instructive to see how the same "experts" appro
ach the same problem in three different languages. Three versions of BASIC are
emphasized: Dartmouth, BASIC-PLUS, and ANS Minimal; the flow charts are a bit
dated. Well, now; that makes eleven.

Eleven what? Reports on books useful in all SuperPET languages/facilities. From
the vast sound of silence, the rest of you read the Gazette and the comics. Of
all our teachers, two read books. We guess the rest are too busy with the PTA.

FOR THOSE WHO ENJOY MYSTERY STORIES Does the telephone always ring as soon
IN WHICH WE GET TO NO AVAIL as you start to run a long, involved

program? If so, you probably learned,
long ago, to stuff a GET in the middle of your loops so you can pause a program
and restart it again at your pleasure. If your language has no GET (mPASCAL and
mFORTRAN don't), you can write simple routines which will sense a keypress with

SuperPET Gazette, Vol.II, No.1 -12- October/November 1984

out a RETURN (we demonstrate some later), whether to pause a program, to pick a
choice from menu, or to control execution. In exploring the mystery we next de
scribe, we picked up some knowledge and techniques useful in all languages.

Whatever the language, however, GETs sometimes don't GET; at times, you can hold
down a key with both feet and never sense the keypress. Hmmmm. Why? (For those
unfamiliar with GET: SPET allows you to sense the ordinal [ASCII code number] of
any key as a numeric variable, unlike Microsoft BASIC, which GETs only string
values, except for the number keys.) You can, of course, GET a key as a string.

Let's start at the beginning. In the loop below, we can pause our program at any
time with OFF. Since you needn't clear the keyboard buffer or zero out variable

"ordinal#"; we usually use this method in all
10 loop loops of long programs— a touch of OFF pauses a
20 ...rest of loop program; another touch of OFF restarts it. Well
30 get ordinal# and good— until you vary the method to sense any
40 if ordinal#=255 ! 0FF=255 key but OFF. Woe, woe. We revi-
50 get ordinal# : if ordinal#<>255 then 50 sed the program to pause on "p"
60 endif and to continue on "c", (see
70 endloop the second program below) and

ran into two problems, one min
or, one major. The minor problem: Any key but OFF, if held down, not only fills
the buffer, but also takes priority (while it dumps from the keyboard buffer)
over the next key you press. In sum, you must clear the buffer of one character
before you employ another. The program below does that. But!— we run into anoth
er and more serious problem. Take a look at line 170, below. Will the program
proceed while the "c" key (ordinal 99) is held down? Yes or no?

If you said "yes," we're sorry (sob!) to say you're wrong though eminently logi
cal. If you watch the printout of "ordinal#", you'll often see zero, even if the

"c" key is held down by an anchor and both feet....
110 ! insane :bd Why? How does a zero ever return if the "c" key is
120 for i#=1 to 1000 depressed? While you ponder that mystery , note
130 get ordinal# that lines 130-180 will pause
140 if ordinal#=112 ! 'p ' key any loop with "p" and continue
150 get ordinal# : if ordinal#<>99 then 150 it with "c" no matter how long
160 elseif ordinal#=99 ! 'c' key either key is held down.
170 get ordinal# : if ordinal#=99 then 170
180 endif If you're curious, play with
190 for k=1 to 150 ! Vary this delay to the time delay in 190-200, or
200 next k ! see what happens take it out. Peek the keyboard
210 print ordinal#; buffer (decimal 304 to 343);
220 next i# see if you can figure out what

happens to the missing "c". If
you're puzzled, write a little program which reports time in seconds, PEEKs the
jiffies in SuperPET (you'll find 'em at $163), and prints the ordinals of the
characters you GET. Run it. How many zeros come back instead of characters when
you hold a key down? Stuff in a time delay. Do things change?

If you figure out what goes on, then write a routine which will pause a program
as long as a key is held down— and always pauses it when a key is depressed, no
matter how briefly. If you can't penetrate the puzzle, read on whilst we explore
the keyboard, the PIA and the keyboard buffer. All may become clear (well, most
ly). Best of all, we learn to make the keyboard dance to our tune in all of the
languages.

SuperPET Gazette, Vol.II, No.1 -13- October/November 1984

HOW TO TRICK THE KEYBOARD BUFFER SuperPET carries tv;o pointers to the key-
AND USE ITS POINTERS board buffer, at decimal 300 and 302. We

knew the first pointed to the location in
the buffer (at decimal 304-343) of the next character to be sent to screen, but
hadn't figured out what the second pointer (at 302) was for. Whilst puzzling ov
er the mystery described in "For Those Who Enjoy Mystery Stories," this issue,
we finally found out— and it's handy to know (each pointer is in two bytes; at

300-3 0 1, and at 302-303 decimal).

The keyboard buffer holds 40 characters (well, 39. See below). How does SuperPET
know which is to be printed, and wlr'n to 3top printing?

Suppose you hold a key down more than half a second or enter a string of charac
ters (the repeat routine repeats a key when it's down for 30/60ths of a second).
The first pointer (at 300) marks the position of the first character put into
the keyboard buffer; as a key repeats or more characlers are entered, the second
pointer increments. When the last character is entered, the second pointer (302)
points to the next buffer location to be filled. As characters print from the
buffer, the first pointer (at 300) increments until it equals the second pointer
(at 302). Well, if both pointers point to the same location, one location in the
buffer can't be filled— which is why you'll print only 39 characters from the
buffer (thanks, Loch Rose). Obviously, when both pointers point to the same ad
dress in the buffer, you get no more characters from it until you press another
key. If you use this knowledge, you can fool a full buffer into thinking it's
empty. And you can, as we’ll later see, easily find the last character of many
entered into the buffer.

100 ! foolitibd
110 open # 1 2, "keyboard",output
120 for i#=1 to 40
130 print #12, rpt$("X",40)

get ordinal#
print ordinal#;

poke 300,1,48,1,48
get ordinal#
print ordinal#;

140
150
160
170
180
190 next i#

In the program at left, we fill the buffer
with trash (forty X's) on each pass, print one
character of the trash, and then POKE the two
buffer pointers to the value of 3 0 4, the add
ress of the first location in the buffer (re
member that a POKE of 1 in the high byte of an
address equals 256; 256+48=304)- When we try
to GET another character on line 170, the buf
fer says "Ain't got any," and returns zero.
Run the program as is; then comment out line
160 (the POKE). Aha! You print the ordinal of

"X"— and when the program ends, you dump all 40 X's from buffer to the screen.
Stuff the POKE back in and the trash disappears— in all languages.

Those with sharp eyes will note that the high byte of each pointer will always
hold a "1"— for the decimal 256 which, added to the low byte, forms the buffer
address. So you can, as Loch Rose suggests, fool the buffer by "poke 301, peek
(303)". This stuffs the same low byte into each pointer; we know the high poin
ter bytes always are "1". Or you can "poke 301,48, poke 303,48", which sets both
pointers to the start of the keyboard buffer at 304 (256+48=304).
You may, of course, clear the whole buffer in some languages by opening the key

board as a file and printing 40 nulls [print #5 , rpt$(chr$(0),40) fills the buf
fer with nulls in mBASIC, for example]. This won't work completely in mFORTRAN,
however. Part of the buffer is filled with nulls; part remains full of previous
characters; in addition, you must use format control and print the nulls with an

SuperPET Gazette, Vol.II, No.1 -14- October/November 1984

"a1" format, or you get a space (ASCII 32) after every null. Thus the POKEs dis
cussed above are particularly useful in mFORTRAN, as we'll later see.

Equally useful is the knowledge that you'11 find the very last character enter
ed at the location pointed to by the second pointer (at 302) minus one. If that
pointer always points to the next location to be filled, then "high pointer-1"
must show the address of the last character we stuffed into the buffer (except
when the pointer "wraps around;" see below). We'll later put this knowledge to
work. Before we do, let's look at the PIA (Peripheral Interface Adapter) at add
ress $E810-$E813, which actually senses all keypresses in SuperPET. We will be
able to exploit that device, too— in all languages.

* * *

Pointer Wrap-Around Associate Editor Stanley Brockman reminded us that both
pointers (at 300 and 302) must "wrap." The Keyboard Buffer can hold only forty
bytes; when either of the pointers reaches location 343— the end of the buffer—
it wraps to location 304. Thus, if you PEEK the pointer at 302, and it holds the
address of 304 (start of buffer), the last character entered in the buffer is at
location 343— and not at location 304 minus one. If you want to sense accurately
the last character entered, you must allow for this "wrap." At other times, when
you sense a keypress, you may disregard "wrap." After all, if you hold down a
key, and the high pointer (at 302-303) has just "wrapped" to index the start of
buffer at 304, you get the answer to what key is down l/60th of a second later,
at next IRQ. Then the high pointer increments to 305, and the last character you
enter will indeed be found at 305 minus one— at location 304 in the buffer. We
sense keypresses in later examples in this issue without regard for "wrap."

A GLANCE AT THE PIA The PIA1 (1st Peripheral Interface Adapter) senses key-
Another Approach presses in SPET during IRQ interrupts. Software in ROM

uses PIA1 to scan the keyboard sequentially, a row of
eight keys at a time, for ten different rows and a total of eighty scans. The
first byte in PIA1 ($E810) controls which row of keys is looked at. In the tab
le below, for example, we find that if $E810 contains $F0, the "5" key on the
main keyboard, if down, will return $FD in PIA1 at $E812. Any of nine other keys
can also return $FD if down, but only if the value in $E810 is changed. If no
key is down, $FF returns in $E812. As we'll see, that knowledge is golden in any
SuperPET language.

The ROM routine which drives the PIA scan always starts with a value of $F0 in
the PIA at $E810, and then increments that value through $F9 as it scans more
rows of keys. The last row of keys scanned is shown in the right-hand column of
the table below, under $F9. Since the $F9 scan is the last look at the keyboard,
the returned value in the PIA (if any) for any key in that row remains in the
PIA, at $E812, until the next interrupt. You can therefore peek the PIA at $E812
and identify any key in that last row, if it was pressed. In short, if you use
the colon, 9, 6, 3, or left-arrow keys for program control, you can sense which
key was pressed— and if it has been released. We do it in a simple way in mFOR
TRAN at left, below, and give that language a way to GET a keypress without a
RETURN in a routine which runs quickly. We use the LEFT ARROW key; when pressed,
it pauses the program until the key is released. It then looks for another press
of LEFT ARROW before it will resume. Obviously, you can modify the routine to
force mFORTRAN to do anything you want done when LEFT ARROW is touched.

do i=1, 40 * The DO loop is purely for demonstration,
print, "loop"

SuperPET Gazette, Vol.II, No.1 -15- October/November 1984

call get

enddo
end

subroutine get

ipia=peek1(-6126)
if (ipia=254) then

loop
ipia=peek1(-6126)

until ipia=255
loop

ipia=peek1(-6126)

until ipia=254
k=poke2(300,304)
k=poke2(302,304)

endif
end

* A call to subroutine GET checks the PIA to see if
* a specified key has been pressed.

* The negative peek (-6126) is at location $E812.

* We peek the PIA at $E812.
* If the key value is $FE (254), LEFT ARROW is down.

* Wait until $FF (255) says no key is down.

* Program pauses until LEFT ARROW is pressed again.

* We tell the keyboard buffer it is empty. See article
* this issue on fooling the keyboard buffer. If this
* is not done, the LEFT ARROW key will print to the
* screen.

Table of PIA Key Values at $E812 vs. PIA Values at $E810
This table shows which keys are scanned for each of ten values in the PIA at

$E810, and the return value fcr that key as found in $E812.
[TK 1 stands for 'Keypad']

j— Value in |
i $E812

i .
| $F0 $F1

Keyboard Row Values
$F2 $F3 $F4

in PIA at $E810
$F5 $F6 $F7 $F8 $F9

$7F Key: Vacant K9 K5 K6 DEL K4 K3 K2 K1 Vacant

$BF Key: Vacant Vacant ; @ P [R.SHFT Repeat / Vacant

$DF Key: Cur Rt.
a

k 1 i 0 Vacant Vacant Vacant :

$EF Key: K8 K7] RET \ Cur Down K. K0 HOME STOP

$F7 Key: - 0 h 3 y u • y m 9

$FB Key: 8 7 f g r t b n Vacant 6

$FD Key: 5 4 s d w 1 c V x 3

$FE Key: 2 1 ESC a TAB q L.SIIFT 2 OFF _

There are 71 keys to which the PIA can respond (not counting shifted keys or the
SHIFT LOCK key); the matrix above provides room for 80 values, of which nine are
vacant. The abbreviation 'K' stands for 'KEYPAD'. The normal value seen in the
PIA at $E810, outside of interrupts, is $F9; we restore it (though it may not be
neccesary) when we use $E810 to sense a keypress directly. The Interrupt Flag
should be set (SEl) before varying $E810, and restored (CLl) at the end of the
assembly-language segment which varies $E810, else the normal interrupt routine
will go through the keysense routine and change the value in $E810. Note that
the right and left SHIFT keys return two different values. Sensing SHIFTed keys
requires a complex program, and is not advised unless you understand the PIA
thoroughly.

SuperPET Gazette, Vol.II, No.1 -16- October/November 1984

In assembly language, you may sense specific keys during a user interrupt routi
nes while the Interrupt Flag is set and normal system key-sensing routines are
not available. The short assembly language segment below shows one way to sense
a specific key while the Interrupt Flag is set. The routine will not execute un
til OFF is pressed and released ($FF returned in $E812 says "no key is down").

printf_ equ $b0b7
sei ; Set the interrupt flag,
ldd #message
jsr printf_ ; Tell user to press the OFF key to proceed.
Ida #$f8
sta $e810 ; Store in $E810 proper value for OFF key ($F8).
loop

ldb $e812 ; Load PIA key value returned,
cmpb #$fe ; Compare with value of OFF key.

until eq
loop

ldb $e812 ; Continue sensing $e812 until NO KEY DOWN is returned,
cmpb #$ff

until eq
{Insert routine to execute when OFF is pressed; we substitute a simple message,
ldd #doit
jsr printf

ldb #$f9
stb $e810
cli
swi

This may not be necessary, but let’s be tidy.
Restore $E810 to normal value.
And clear the Interrupt Flag.
This program runs in the monitor only.

message fee "Press OFF to Execute^n"
feb 0

doit fee "We execute user routine^n"
feb 0
end

IN WHICH WE FIND THE MISSING "C” The "c", of course, isn’t the head of MI-6
of British intelligence, but the missing

character we lost a few pages back. If you explored the problem, you may have
noted the essential clue: in tight, fast loops you always try to GET more char
acters from the keyboard buffer than there are interrupts to sense them. If, for
example, your program prints out 110 GOT characters, while only 80 interrupts
occurred, then you are bound to GET some nulls from the keyboard buffer. The
problem is made worse because a key won't repeat unless held down for more than
one-half- a second, and because four interrupts must occur for each "repeat" of
a key into the keyboard buffer (the system routine causes this delay so the cur
sor won't move like lightning).

We must distinguish between key-sensing (done at the PIA during interrupt) and
key-getting (done from the keyboard buffer). If a loop executes quickly, there
may be too few interrupts to GET a key; if so, no key value is put into the buf
fer; any GET from the buffer returns a null. That is why "c" was missing, and
why a time delay in GET loops reduces the number of "no key down" returns.

If you hold a key down and clear the buffer afterward, you can GET even in the
languages without an intrinsic GET. We demonstrate below with a simple program

SuperPET Gazette, Vol.II, No.1 -17- October/November 1984

do i=1, 40
print, "loop"
call get

enddo
end

subroutine >̂ et

in mFORTRAN, which employs all the techniques we’ve discus
sed so far, except the PIA. It pauses any mFORTRAN program
on "p" and continues it on "c", no matter how long either
key is held down. It can easily be modified to handle menus
or to control program execution by GETting a character from
the keyboard without a RETURN; the technique should be easy
to adapt to any language which does not possess an intrin
sic GET function.

ipointer=peek2(302)-1
ioff=peek1(ipointer)
if (ioff=112) then

open(lO, file="keyboard")
write(l0,"a1") rpt(char(0)
close(lO)
loop

ipointer=peek2(302)-1
igo=peek1(ipointer)

until igo=99

k=poke2(300,304)
m=poke2(302,304)

endif
end

* Get pointer to last character entered.
* Peek the character at that address in buffer.
* Is it "p"? (ASCII 112='p'.) If so,
* Open the buffer, and

,40) * fill as much as possible with null. If you
* leave out this step, mFORTRAN will crash if

•.p.. or "c" are held down long enough.
* Then find the last character pointer again.
* A:id wait for a "c" (ASCII 99).

* Tell the keyboard buffer that it is empty.
* (You can substitute k=poke1(301,48) and
* k=pol:e>1 (303 »48) to stuff the value of 304
* into each pointer. High byte of both is 1.

Though the program seems involved, it runs very quickly. If you've pressed no

key, the subroutine runs with two PEEKs and then returns. If a key has been held
down, the reaction time you need to press a new key is far slower than the code.
The method, of course, is system-dependent and won't work if you transfer the
code to another computer running mFORTRAN. Anybody know hew to do the same thing
in either mFORTRAN or mPASCAL in a system-independent way?

100 ! pause:bd
120 for i#=1 to 100
125 get ordinal#
130 print "pauses",
150 if ordinal#=112
155 for j=1 to 7
160 get ordinal#
165 next j
170 endif

195 next i#
200 stop

If you merely want to pause a program while a key is
down, and resume again when the key is released, the
method at left works nicely. The loop delay is suffici

ent to bypass null GETs. Neither PASCALiers nor
p key mFORTRANners can use it, however, since you may
pauses not reset "i" in either lan-
if ordinal#=112 then j=1 guage. In those languages,

you are therefore forced to
either PEEK the PIA, as we do in a previous article of
this issue, or to use a variable you can reset within a
loop. The PIA technique is by far the simpler.

TO LAUNDER THE APL WORKSPACE From Jakob Bennema in Wageningen, the Nether
lands, we received some excellent APL printouts

which we know emerged from the ISPUG articles on printing the APL character set
(I, 196 ff), since Jakob told us so. When we see such results from the hard work
of our authors, we hope they feel repaid, as we do, for our time and trouble.

Jakob apparently ran out of workspace— a not uncommon problem— and had to cudgel
out room for a few more bytes. Though he)ERASEd both functions and variables,

he checked free memory with quad WA and symbols
(Function on next page) with)SYHB0LS— only to find that while his free
Page breaks! memory had increased, the symbols list was as long

SuperPET Gazette, Vol.II, No.1 -18- October/November 1984

as ever. You can follow what he did in our example
at left, where we delete some functions and some
variables from workspace and check free memory and
the number of symbols before and after.

DELETE FUNCTIONS

CLEAR WS

DELETE VARIABLES

Note that while free memory increases, the number
of symbols doesn't go down, even though some have
been deleted. So, we rename the WS and save it to
disk as file TEST, as Jakob did. Then we)LOAD the
workspace and again check quad WA and SYMBOLS. We
find no change in either value. Gee, can't we free
up a few more bytes for all the stuff we deleted?

As Jakob points out, we indeed can. If we)COPY
file TEST into a clear WS, and again check WA and
SYMBOLS, io!, we pick up 448 bytes, and the number
of symbols drops from 69 to 47. Can we now save
this laundered workspace? Indeed we can, if we
give it a name with)WSID NEWNAME and)SAVE it.

Jakob comments that the SYMBOL table defaults to
200; each symbol requires six bytes; you lose 1200
bytes to SYMBOLS unless you set the number needed,
which may be good practice in learning how large
a symbol table you really must have.

V 1 .1 APL obviously does not clean up the symbol table when functions and varia-
les are deleted. You can, however, "launder" a workspace if you follow Jakob's
procedure. You'll face one problem, though: automatic presentation of general
information and of menus will disappear from a WS so COPY'd and laundered. You
must repair the damage.

T H E A P L ffi X H? Ifi BE S S toy HSHEG K I C K
Box 16, Glen Drive, Fox Mountain, RR#2, Williams Lake, B.C., Canada V2G 2P2

It was with some apprehension that I accepted the job of APL Associate Editor.
Steve Zeller has moved on to the IBM PC. His act will be hard to follow!

First, some info on your new Associate Editor— I teach senior high school phy-
ics, math, and computing. APL is used as an alternate programming language to
BASIC and for enrichment work in our computing science course. I write APL pro
grams for classroom use and for fun, am a committed SuperPETter, am not an APL
programmer of the kind who can save the world in one line of code, and can't
promise to solve every reader's problem.

I will, however, try to write an interesting column with hints and kinks on the
APL system, useful programs, explanations of some of the fundamentals of the
language, and ideas for teachers. Reader participation is, of course, welcome.

)L0AD APLCHARS2(AWS
SAVED 84/01/22 14:45:<»2

D/A
17355

) SYMBOLS
200 : 69 IN USE

) ERASE CENTER
) ERASE PRINT
) ERASE 0PEN_PTR
) ERASE APLCHARS
) ERASE APLNAMES
D/A

20851
) SYMBOLS

200 : 69 IN USE
) WSID TEST
)SAVE

) CLEAR
)L0AD TEST
) SYMBOLS

200 : 69 IN USE
D VA

20851

) CLEAR
)C0PY TEST
Dt'A

21299

) SYMBOLS
200 ; 47 IN USE

SuperPET Gazette, Vol.II, No.1 -19- October/November 1984

Send me your ideas, problems (and if possible, your solutions) and your favorite
functions. As with Steve's column, all work will be done in version 1.1 Water
loo microAPL.

To begin, in this first column, let's look at the problem of input and ouput.
Many beginners find the Waterloo manual less than adequate on this subject. The
commands and functions are defined in the manual but require clarification and
examples. In this column, I'll examine workspace and system commands (files will
be covered in the next).

The commands we examine are defined in chapter 2, page 42 of the Waterloo APL
manual. I'll restrict examples to devicc- #8, the normal setting for Commodore
dual drives. The language may be loaded from either drive. To load from drive
0, enter either disk/O.a or disk.a <RETURN> from main menu. The loader at menu
knows the "a" is an abbreviation for "APL." All commands must be followed by a
press of the RETURN key; I won't continue to show the RETURN in this column.

First, some definitions of terminology used:

term
library
program file
workspace
active workspace
object
wsid

definition
disk directory of saved files
a disk file containing program material
APL program containing functions and variables
workspace currently in use in R/W memory
any single function or variable in a workspace
name of a workspace (Workspace IDentification)

1. Displaying libraries: This doesn't require much comment. Use)LIB for drive
0 and)LIB DISK/1 for drive 1.

2. Workspace names: Display the name of the active workspace with)WSID. You
may rename the active workspace in this manner:)WSID EXAMPLE, "example" being
its new name.

3. Loading in program file from disk: The named program file will load in
and will become the active workspace. The previous workspace will be gone. For
drive 0 use:)L0AD wsid, where wsid is the exact name that appears on the lib
rary listing of drive 0. Example:)L0AD SORT loads in a PRC file named SORT from
drive 0. The name of the active workspace is changed to SORT.)L0AD DISK/1.SORT
loads SORT from drive 1. The active workspace is, however, named DISK/1.SORT,
and not SORT, as you expect. This pops up again when you use the)SAVE command
or some of the QUAD functions in file I/O. No benefit derives from this syntax
as far as I can see.

4* Copying objects from a_ saved file into active workspace:)C0PY and)PC0PY
are the two forms of this command. The name of the active workspace does not
change when you use these commands. Objects in the active workspace which have
the same names as incoming objects are replaced when you use)C0PY.)PC0PY will
not load objects which have the same name as objects already in the active work
space. To copy an entire workspace (except for the limitations above), use)C0PY
wsid or)PC0PY wsid, where wsid is the name of the disk PRG file.)C0PY SDUMP,
for example, copies every object in the PRG file SDUMP from drive 0 into the
active workspace. For drive 1, use)C0PY DISK/1.SDUMP. When you wish to copy in

SuperPET Gazette, Vol.II, No.1 -20- October/November 1904

certain named objects only, follow this statement with a string of names separ
ated by blanks:)PCOPY EXAMPLE DEFINE DESCRIBE A B will copy the objects DEFINE,
DESCRIBE, A and B into active workspace (as long as no objects having such names
already exist in the active workspace).

This is a slow procedure as the system searches sequentially through all objects
in the PRG file until it finds the objects named.

5. Saving workspaces as program files:)SAVE will save the active workspace,
under its present name, as a PRG file on drive 0. The obvious)SAVE DISK/1 to
save the V/S to drive 1 fails; the name of the active WS is changed to DISK/1!
In order to save to drive 1, you must use one of two methods: 1) prefix DISK/1
to the name of the active workspace, as in)SAVE DISK/1 .EXAMPLE (note that the
name of the active workspace becomes DISK/1.EXAMPLE), or 2) change the name of
the active workspace, with:)WSID DISK/1.EXAMPLE, and then)SAVE the workspace.
It will file to disk on drive 1.

If you wish to save the active workspace under a new name, use)SAVE followed
by the new name. This operation will abort if a PRG file with this name already
exists on disk. Of course, when we look at the WSID after this operation, we
find that it has been changed to the new name. If, for example, the current name
of the active workspace is EXAMPLE and a)SAVE EX is successful, the name of the
active workspace becomes EX after the SAVE.

6. Scratching PRG files from disk:)DR0P wsid scratches the program file named.
)DR0P EXAMPLE and TDROP DISK/l.EXAMPLE will scratch the PRG file EXAMPLE from
disks in drive 0 and drive 1, respectively. This command will not work with any
other file types (such as SEQ).

This completes my discussion of the right parenthesis commands.

Disk operations such as formatting a new disk, copying files between drives,
backups, etc., can be difficult within the APL operating system. A simple solu
tion to this problem is to have a set of functions on disk which handle these
operations. Either copy into workspace specific functions for each operation
or use an all-purpose, menu-driven program. Soon after I got my SuperPET, I
wrote such a menu-driven program (D0S_SUPP0RT). It is found on the ISPUG Start-
er-Pak and ISPUG APL Character Set disks and is very handy. I'll explore this
further in a future column.

Alphabetic sorts are always of interest. In APL, the obvious method is to use
the powerful primitives for matrix operations. Character data are entered as
rows of a character matrix. The rows may then be sorted according to the alpha
betic position of characters in the columns. Simple sorting functions typically
are one or two lines long. The following three functions comprise a program to
enter, sort, and print a list of student names.

VENTERLD]V
0] ENTER \ A \ I
1] OZr[5,3]
2] 'ENTER NUMBER OF NAMES TO SORT'
3] MAT+-((AMD) ,25)p* *
4] Dr0*-i«-i

5] START: H I - N + D /F I N

SuperPET Gazette, Vol.II, No.1 -21- October/November 1984

r
L 6] 'ENTER NAME NUMBER \ v l
[7] M A T U O + A ,{25-p(/HU))p' *
C 8] M + l
[9] -STA R T
L

1—10tH FIN: SORT
VS0RTLU1V

r 0] SORT a WOO PS 1 REG SENT A SHORT SORT WITHOUT ' M A T O N
[1] MAlHM ATlbM ATi]) n LINE 1— I T SENT THE UNS0RTED L IS T TO PRINTER.
[2] MAT a GEEt ANOTHER ONE-LINER B ITE S

VPRINTiUhV
THE DUST. SORRY, REG

[0] PRINT
[U 'IE B E H ' Q CREATE 1
[21 MAT DPUT 1
C 3] QUNTIE 1
In line 3 of ENTER, an empty matrix, MAT, is created with H rows and 25 columns.
If more than 25 characters are needod, change the number 23 in lines 3 and 7 to
the desired number. In line 7 of ENTER, each entered name is put into a row of
MAT; the proper number of spaces is added to fit each row into the 25-column
matrix. In PRINT, a file is created to an IEEE-488 printer; the matrix is sent
to that file. MAT is in the active workspace and may be displayed. When you want
to print, simply enter: PRINT <RETURN>.

I brought home a 2031 single drive the other day. It worked fine when treated
as drive 0. To load APL from 6809 menu, you must use "disk.a", as noted earlier
in this column. The 2031 is read-compatible with dual drives but isn't write-
compatible, as the track widths are different. In order to have two drive units
in operation simultaneously, the device number of each must be unique. Without
modification to the drive hardware, all drives come up as device #8. You may
change device numbers temporarily (they will be reset to #8 the next time you
turn on the drives) from program, using the memory-write command. This procedure
is described (using BASIC) on pages 56 and 57 of Commodore's Disk System User
Reference Guide. The memory-write command is sent to the command channel follow
ed by the low byte and then the high byte of the DOS memory address (in decimal
form). The data bytes in decimal form are sent next. All drive units (the 4040,
8050, 8052 and hard disks) except for the 2031 use the same DOS memory address.

DOS memory address contents may be read from the drive into the computer using
the memory-read command. If we use that command, we can write an APL function
which first checks the drive unit and then sends the correct address bytes to
whichever drive we use. The example following shows the syntax for such commands
in APL.

vrflCDlv
0] A TO B ;□I0\C H AN \C
1] (C H AN*-'IEEE', (7.4) ,1 +15’) W RE ATE 1+0IOK)
23 (’)+p’, W [1 9 2 224]) QPUT 1
3] CHAN UTIE 2
4] C+QAVxWET 2 1
5] (* |+««i,,04/[(12+107x£=221) ,0 2,B+32 64]) □PUT 1
5] UUNTIE 2 1

8 TO S <RETUFJ.> changes the device number of a unit from #8 to //9.

SuperPET Gazette, Vol.II, No.1 -2?- October/November 1984

I arbitrarily picked ROM address $E5C2 because it differs in contents between
the 2031 and the 4040 drives. Since the 2031 has a 221 there and the 4040 a 22,
you can distinguish between the drives from program.

In line 1, we access the command channel for the M-W and M-R commands, which
appear in lines 2 and 5. We must reaccess the channel to input the byte from the
drive's ROM. This we do in line 3; in line 4 , we read the byte. Line 5 shows how
the function selects which address to send. The value of 12+107x0=221 will be
119 if 0=221 (a 2031 drive) and 12 if C has any other value (a 4040 drive). This
function should also work with other drive units unless we're unlucky enough to
get a 221 in $E5C2 from those drives. Try it and let me know what happens.

In future columns I'll try to clarify more 1/0 commands and functions, cover
direct function definition in APL, and touch on simulation. The size and subject
matter of the column will depend on the letters, questions, ideas and informa
tion I receive from you. Be sure to write! If anyone out there has good memory
maps for the 2031, 4040, and 8050 drives, PLEASE send them.

B I T S B Y T E S & toy (Eairy ffiaatt 1 iffff „ Sir -
215 Pemberton Drive, Pearl, Mississippi 39208

There is within your assembler another assembler waiting to get out. This
is not documented in the Waterloo manual; however its existence is clear to any
one who will carefully examine the reserved word list for the 6809 assembler.
This table is found in chapter 9 of the assembler manual on pages 191-193. We
invite you to take a few moments to study this table closely.

Yes, here you will find several reserved words which are not for the 6809
micro-chip. The words such as LDAA, LDAB, CLC, DES, DEX, etc. are familiar to
those who have seen listings for the earlier Motorola chip, the 6800. Can it be
that we have within our familiar 6809 assembler the beginning of a cross-assera-
bler for the 6800?

The answer is almost. Here, I must thank the staff of McGraw Hill for their
permission to include the data from Table 3-10 of their "6809 Assembly Language
Programming" by Lance Leventhal. It is this table which will allow us to create
a set of macros which will give us full suport of the 6800 instruction set. This
is because some but not all of the missing 6800 instructions have been converted
by the people at Waterloo. It is as if they left out several as an exercise for
students.

The easiest way to determine which of these we must convert is to simply en
ter this table and let the assembler error messages tell us which of these codes
are not supported. This is exactly what I did to produce a list of the words
which we'll include in macro definitions to complete the 6800 instruction set.

*** Error: Undefined operation code: ABA
1 aba

*** Error: Undefined operation code: CBA
2
3 0000
4 0002
5 0004
6 0006

1C
1C
1C
32

FE
EF
FD
7F

cba
clc
cli
civ
des

Here you will notice that there
are only four 6800 instructions
which are not already properly
converted for us.

These are clearly marked in the
list file produced by trying to
assemble the complete 6800 set

SuperPET Gazette, Vol.II, No.1 -23- October/November 1984

7 0008 30 1F dex
8 000A 32 61 ins
9 000C 30 01 inx

10 000E 34 02 psha
11 0010 34 04 pshb
12 0012 35 02 pula
13 0014 35 04 pulb

*** Error: Undefined operation code:

14 sba
15 0016 1A 01 sec
16 0018 1A 10 sei
17 001A 1A 02 sev
18 001C 1F 89 tab

19 001E 1F 8A tap
20 0020 IF 98 tba
21 0022 1F A8 tpa
22 0024 1F 41 tsx
23 0026 IF 14 txs

*** Error: Undefined operation code:

24 wai
25 end

of "missing instructions."

Also notice that the 6809 ass
embler has properly translated
the missing codes to standard
6809 operations:

For example: the code for "clc"
is translated into 1C FE; when
this is looked up it is found
to mean ANDCC #$FE, which, of
course, clears the carry flag
in bit 0. The other operations
are also correctly translated.

Thus, the only work for us is
to supply the macro definitions
for these assembler mnemonics:
ADA, CBA, SBA and WAI, and our
assembler will be ready to do
double duty by now being able
to act an a 6800 cross assem
bler.

The data provided in Table 3-10 of the above-cited work will enable us to
create the macros very easily. The following set of definitions will let us en
ter routines from the vast library of available 6800 material and have it run
on our SuperPETs.

; 6800 macro definitions to allow Waterloo 6809 assembler to use 6800 code
; by Gary L. Ratliff — permission to use Table 3-10 granted by McGraw-Hill
; File all to disk holding your source code as: "6800.asm"

a be macr
pshb
adda
endra

cba macr
pshb

cmpa
endra

sba macr
pshb
suba
endm

wai macr
cwai
endm
end

that the
line and

; add the 6800 aba instruction
3 ^ 0 4

, s+ 4 & E ft

; add the 6800 cba instruction

>s+ £ 0

; add the 6800 sba instruction

»s+ h p

; add the 6800 wai instruction
#$ef z c £ P

The only remaining problem is
how to interface these defin
itions with our source program.

This we do with the "include"
directive. Whenever we want to
U3e these macros, to get full
support from the 6800 instruc
tion set, we only have to use
the following line in source
(assembler) code

;include <6800.asm>

as the first line in our pro
gram and we are all set. As a
matter of fact, if you enter
the complete list of 6800 in
structions, as we did in the
example above, you will find

6800 instructions will assemble without error if you add the "include"
have filed the macros above to disk.

SuperPET Gazette, Vol.II, No.1 -24- O'-'tober/November 1934

There are plenty of programs available for the 6800 chip. A good series on
the creation of an operating system was presented in EDN, all of it written for
the 6800. Also, the much cited Lewis text, "Software Engineering for Micros,"
has material for the 6800.

This brief example shows how easy it is to now use 6800 code on SuperPET.

;include <6800.asm)

org $1000
stack rmb 1
status equ $f000
vari feb $5
entry ldaa vari
loop2 staa save

Ids #stack
rora
bvc loop2
ldaa status +1
rts

save feb 0
end

You'll note that in this example we do not use any of
the macro definitions we developed. This is to be ex
pected, as the Waterloo assembler uses the macros on
disk and translates the 6800 code to 6809 code for us
without any problems.

One feature of many 6800 assembler listings isn't sup
ported. Many such 6800 programs show "ldaa" in the form
"Ida a". This will only produce syntax errors on the
6809 assembler, so use the form "ldaa".

That's it for this time; in the next installment, we'll
demonstrate how to write programs which may be assembled
on either the 5609 or 6502 processors of SuperPET.

[Ed. Want a printer that lists for $495» prints quietly at 150 cps, turns out
very clear copy, and doesn't need an interface (cables directly to the IEEE-
488), is mostly compatible with WordPro and PaperClip, and which you can both
use and control from the microEDITOR? Read on.]

USER REPORT : HEWLETT-PACKARD My requirements for a printer were: good print
THINKJET PRINTER quality, especially when duplicated on a Xerox
by Shawne Ross machine, easy to use, simple to interface, re-

3029 Keighly Road, Nainamo, asonably priced and not too noisy. Much of my
B.C. Canada V9T 2C9 word processing is done with the microEDITOR,

as I often mix text and program listings in
hand-outs for my computer science classes, so I particularly wanted a printer
that would respond well to commands given from the microEDITOR, as well as work
with WordPro.

The HP ThinkJet comes with one of three interfaces built-in: the HP IB, Hewlett-
Packard's version of the IEEE-488 bus, parallel, or serial. I received somewhat
conflicting advice on which of the three to choose: one Commodore dealer sug
gested that the HP IB would not be compatible and that I should get the parallel
which would require the purchase of the Centronics Parallel interface at a cost
of $200 additional; another Commodore dealer suggested that the only real advan
tage of the Centronics interface would be that the printer could be transferred
to another system if I changed computers; and the Hewlett-Packard dealer could
see no reason why the HP IB would not work just fine. Being a little short of
cash, I chose the IEEE (HP IB) and simply cabled the printer onto the disk drive
with an IEEE cable and so far have found no problems whatsoever with this setup.

Two small changes were required to get myself printing. The printer has a seven-
segment switch on the rear panel which is used to set the printer address. It is
factory set for an address of 1, common to HP systems, and needs to be set to 4
for the SuperPET if you want to call your printer "ieee-4". The rightmost five
switches need to be set at 00100, which represents 4 in binary.

SuperPET Gazette, Vol.II, No.1 -25- October/November 1984

The second essential change is to send a one-time command to the printer, after
you turn it on, to generate a linefeed whenever it is sent a carriage return.
Otherwise, all of your text will be printed on one line— most disconcerting the
first time it happens. The manual very clearly explains how to send this code,
and I found in all cases that best method was to send a series of ASCII numbers.
Since the linefeed is needed in all modes of operation, including WordPro, I
first wrote programs in Pascal and in Basic (6502) to send the command. Later,
I saved the character codes as a disk file which can be sent from the mEDITOR,
then finally wrote a short assembler program which can be called from main menu
to do the trick. This command needs to be sent only once— on power-up.

I found the manual well-written ana easy to understand. It contains all I need
to know to access the various modes of the printer, including four different
pitches, 6 or 8 lines per inch, perforation skip, bold print, subscript or su
perscript and underlining. The nicest part is that all of these modes can be
invoked in the microEDITOR using the method given in the April/May Gazette,
(Volume I), page 220.

To try out the dot-addressable graphics, I designed a small logo of ray initials
and followed the instructions in the manual to write a Pascal program to produce
it on the printer. It is quite easy to do, although a little boring and time-
consuming— but another bonus popped up. With two small changes to the Pascal
program, I could send the characters to a disk file [declare a variable "graph
ic" of type "file of char", then add a line: rewrite(output, 'graphic')]. After
that, whenever I want to print the logo I can simply say "copy graphic to ieee4"
in the mED and it prints, considerably faster, incidentally, that from the Pas
cal program.

I consider the print quality to be very good. The normal print pitch is 80 char
acters per line (12-pitch), but this is a little smaller than you might expect,
as the 80 characters are preceded by and followed by a one-inch margin. [Ed. the
sample we have prints a typed page exactly the size of those in the Gazette.]
It is fast (150 cps) and very quiet, compact (8x11x3 inches). The disposable
print-head cartridge pops in or out very neatly. Rather then being an impact ma
trix printer, the ThinkJet sprays a thin film of ink through a pattern of dots
onto the paper. HP says the cartridge is good for 500 pages and although I'm not
through my first cartridge yet, that seems to be about it. I have found that the
print-head does benefit from an occasional wipe with a tissue, as suggested in
the manual. The printer responds fine to WordPro, with the "enhance" command re
sulting in an underline as I rather hoped it would.

Two small negatives for me: I am accustomed to the knob on Commodore printers
that allows you to manually move paper forward or backward to position it. The
ThinkJet has buttons for linefeed and formfeed, but of course these only propel
the paper forward. Secondly, HP recommends that special paper be used to obtain
well-formed and very black printing. This paper costs $90 (Can.) per 2500 sheets
fanfold. This is not outrageous but considerably more than the price for ordin
ary paper. The quality of print is perfectly readable on plain paper, but is
definitely darker and sharper on the recommended paper.

All in all, I'm very happy with the performance of the printer and would be glad
to pass on information to any interested parties. [Ed. We were sufficiently im
pressed by this review to try out the printer. It works with WordPro and with
PaperClip on available printer files with two exceptions: it won't boldface with

SuperPET Gazette, Vol.II, No.1 -26- October/November 1984

any printer file, and it will not proportional-space justify text to the right
margin. It would be easy to create a printer file with PaperClip to do boldface,
since the printer has a boldface ESCAPE sequence. Right margin justification is
not possible for lack of a microspacing command. Yes, underline works fine. The
manual is clear and concise. Medium and high-density graphics modes are built-
in. It would be extremely difficult to print APL, since a whole row of dots
(total width of the paper) must be defined at one time. The price on a 2500-
sheet fanfold of special HP paper is $63 U.S. The printer will handle cut paper,
also available from HP, though it's slow to load. Available in addition to the
default 12-pitch output are compressed print (142 characters per line, expanded
(40 cpl), expanded-compressed (71 cpl), all in either normal or bold face, with
or without underline.]

COMING UP NEXT ISSUE We promised an article on position independent code
(PIC) in this issue, but didn't have space to show how to use PIC in the langu
ages, as we will next issue for sure. John Toebes has written at length on the

undocumented routines in SuperPET; we'll begin his material next issue.

Loch Rose and Alain Proulx have written some gorgeous assembly-language programs
which load at menu, show a two-column directory, and let you copy, delete, read
any SEQ file, and, in general, manage your disk library without ever typing a
filename. What was a chore turns into a delight. More coming.

And we just reviewed a new microEDITOR from Joe Bostic, with word-wrap in insert
mode (ooooh!), text move (anywhere), echo (duplicate text as often as you wish),
ASCII control codes from the mED (you PRINT the files to disk), sorted two col
umn directories, immortal filenames ("names" doesn't change with each "put" or
"get" unless you change "name" yourself), a HOME key that homes the cursor, and
(at last!), a "dc" command (short for Disk Command) which lets you give any 3.0
DOS command from the mED (goodbye "g ieee8-15")— and an EXEC command which exe
cutes, at command cursor, any canned command files you put on disk. SuperED!

Prices, back copies, Vol. I (Postpaid), $ U.S. : Vol. I, No. 1 not available.
No. 2: $1.25 No. 5: $1.25 No. 8 : $2.50 No. 11: $3.50 No. 14s $3.75
No. 3: $1.25 No. 6 : $3.75 No. 9: $2.75 No. 12: $3.50 No. 15: $3.75
No. 4: $1.25 No. 7: $2.50 No. 10:$2.50 No. 13: $3.75 Set: $36.00
---------------------------------- Volume II---

No. 1: $3.75
Send check to the Editor, P0 Box 411, Hatteras, N.C. 27943. Add 30# to prices
above for additional postage if outside North America. Make checks to ISPUG.

DUES IN U.S. $$ DOLLARS U.S. $$ U.S. $$ DOLLARS U.S. $$ U.S. DOLLARS $$
APPLICATION FOR MEMBERSHIP, INTERNATIONAL SUPERPET USERS' GROUP

(A non-profit organization of SuperPET Users)

Name:___________________________________ Disk Drive: __________ Printer:_______________

Address:__ __________ ___________________________
Street, P0 Box City or Town State/Province/Country Postal ID#

[] Check if you're renewing; clip and mail this form with address label, please.
If you send the address label or a copy, you needn't fill in the form above.

For Canada and the U.S.: Enclose Annual Dues of $15:00 (U.S.) by check payable
to ISPUG in U.S. Dollars. DUB’S ELSEWHERE: $25 IKS. Mail to: ISPUG, P0 Box 411 ,
Hatteras, N.C. 27943, USA. SCHOOLS!: send check with Purchase Order. We do not
voucher or send bills.

SuperPET Gazette, Vol.II, No.1 -27- October/November 1984

This journal is published by the International SuperPET Users Group (ISPUG), a
non-profit association; purpose, interchange of useful data. Offices at PO Box
411, Hatteras, N.C. 27943. Please mail all inquiries, manuscripts, and applica
tions for membership to Dick Barnes, Editor, PO Box 411 » Hatteras, N.C. 27943.
SuperPET is a trademark of Commodore Business Machines, Inc.; WordPro, that of
Professional Softv/are, Inc. Contents of this issue copyrighted by ISPUG, 1984*
except as otherwise shown; excerpts may be reprinted for review or information
if the source is quoted. TPUG and members of ISPUG may copy any material. Send
appropriate postpaid reply envelopes with inquiries and submissions. Canadians:
enclose Canadian dimes or quarters for postage. The Gazettte comes with member
ship in ISPUG.

ASSOCIATE EDITORS
Terry Peterson, 8628 Edgehill Court, El Cerrito, California 94530
Gary L. Ratliff, Sr., 215 Pemberton Drive, Pearl, Mississippi 39208
Stanley Brockman, 11715 West 33rd Place, Wheat Ridge, Colorado 80033
Loch H. Rose, 102 Fresh Pond Parkway, Cambridge, Massachusetts 02138
Reginald Beck, Box 16, Glen Drive, Fox Mountain, RR#2, B.C., Canada V2G 2P2
John D. Frost, 7722 Fauntleroy Way, S.W., Seattle, Washington 98136

Table of Contents , Issue 1, Volume II
New APL Associate Editor.... Book on Assembly Language in SPET. ...9

Tricking the Keyboard Buffer...... ..14
A Glance at the PIA................ ..15

HOSTCM................................3 Find the missing GET characters...
HALGOL................................ 4 Launder the APL Workspace.........

...... 5

...... 5 Bits, Bytes (6800 macros)......... ..23

...... 5
FORTRAN Negative Integer Bug....... 6 MUMPS for SuperPET................. ...9

Nomenclature for PaperClip..,...... 6 UD11 Tower Installed Backward..... ...6

SuperPET Gazette
P0 Box 411
Hatteras, N.C. 27943
U.S.A.

i--" A

rz 6^
ijR m e u i T
HD.39754̂

£ 5 4 :

First-Class Mail
in U.S* and Canada

